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Solver

A general purpose sparse matrix parallel solver is developed prima~ily for solving a range
of lincarsymmctric  systems arising from discrctization  of partial differential equations on
llllstrtlct~ll.cd]rlcsl~s. ‘Ilekcy point is that sparse nlatrices arising from finite clement and
finite diffcrcncc methods can be easily cast into a form with certain storage structure and
communication pattern which cm bc standardized in a set of subroutines. The package
inchldcs a set of subroutines for aiding users to do para]lcl 1/0 to read in the mesh file,
partition file, to allocate storage for the sparse matrix and wxcmblc the sparse matrix
elements. The package provides a set of parallel linear solvers, such as preconditioned bi-
conjugatc gradient, the Cholcsky fact orizat ion, quasi minimal rcsidua] solver, or a t wo-st,cp
hybrid method using an incoml)lcte  Cholcsky factorizatioxl to c]iminatc tllc interior grid
points and using a conjugate gradient or the Cho]csky factorization to solve the resulting
much sm~allcr system consisting of grit] points along the processor boundaries, Scaling
tests on lnt,c] Delta up to 128 processors show that the bi-conjugate gradient method
scales lincar]y with t,hc number of processors, whcrca.s the two step hybrid method scales
with the square root of the nunlbcr of processors.

Introduction

One of the common problems in scientific and engineering computations is the con-
struction and solution of sparse cocfhcicnt matrices of linear systems arising from solving
partial difl’crcntial equations based on unst ruct urcd grids [1 ]. Many such cxa.mplcs occur
in analysis by finite clement, finite diffmcncc and finite volume methods. As the scale and
coml)lcxit,y of calculations grow, massively parallel computers arc increasing used in these
calculations. Here, wc dcscribc a software package for handling these (symmetric) sparse
matrices on a massively parallel distrilmtcd memory computcro The package inc]udcs  rou-
tines to handle the comp,a.ct  storage schcmc to store the nonzcro clcmcnts of the sparse
cocflicicnt matrix, routines to construct the sparse matrix, and a choice of several possible
method to solve the resulting linear equations. Fig.] illustrates the basic data flow chart
of the solver package.

Domain decomposition

Subdomains of the unstructured grids arc divided among processors, The subdomain
boundaries always cut through the links connecting grids, Grid points sitting on the
domain boundaries arc shared among the processors whose subdonmin boundcrs it. in the
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fiIlitc clcmcnt, language (from wllicl) the present solver package is evolved), each clcmcnt
belongs to only Onc ])roccssor, but a given nodal poil]t n~ay physically resided on the several
lmoccssors  which share it,. ]n this case, the variab]cs associated with the same point arc
present in a.]] those processors. Fig.2 indica.tcs how the matrix clcmcmt arc splittcd into
picccs anlong ihc relevant processors. This matrix decomposition differs from many other
decompositions where each matrix clcmcnt belongs to a unique processor. !i’hc most clear
advantage of such a decomposition is that the matrix-vector product is easily carried out,
Wc first do a local VI =: M . V., since all entries arc locally stored. l’his procccds as just
like on a scqucntia] comput,cr.  Afterwards, the only entry in VI which arc not complctc  arc
those for the boundary points, which can bc complctcd by summing up all contributions
from the relevant processors which share this point. This step is called globalizco, Fig.3
skctchcs this matrix-vector product in more details. This decomposition has been clcscribcd
prcviously[2-4] within the context of t,hc finite clcmcnt method, Wc emphasize that this
decomposition arc also suitable for the cocflicicnt n]atriccs arising from a finite diffcrcncc
method. In fact, the application example given at the cnd of this paper is a fhitc diffcrcncc
mcthocl solution.

Sparse matrix storage and construction

Wc used two conq)act storage schcmcs for sparse n~a.triccs. The first onc store only
nonzcro  matrix clcmcnts.  This n)inin)ulll  storage schcmc is convenient for the n)atrix-
vcctor ]Jrocluct usd in conjugate gradient type of itcrat, ivc lncthocls. Other other is so-
callcd skyline profi]c or variable Lmndcd schcmc, ,i,c., on each row, wc store the first

nonzcro  clcmcnt and every clcmcnt bctwccn the first nonzcro  clcmcnt and the diagonal
clcmcnt. This schcmc is very convenient for Cholcsky fact orizat ion, alt bough the st oragc
is not really optimum: some zero clcmcnts arc also stored in this schcmc, Depending upon
the solution n~cthod invoked to SOIVC t,llc linear equations, t,hc pa.ckagc  C11OSC onc schcmc
or a mix of the above schcmcs, as discussed below.

Solution Methods

!l’hc package inc]udcs several solution mctllods t,llat a user may choose to best fit the
l)roblcm at hand. ‘These methods include a pcconclitioncd  bi-conjugate gradient (PBCG)
nlcthod which can deal with both real and conlplcx synmctric matrices; a c~llasi-l~~ix~ix[]lll~)
residue (QMR.) method to hand the symmct,ric COXH1)lCX matrices; a two-step hybrid method
which first do a sequential Cho]cksy factorization to cliluinatc the interior points and
then solve the resulting (mush slllallcr) rcduccd linear systems using either a parallc] bi-
conjugatc gradient iteration method or a l)arallcl Cholcsky factorization.

Conjugate gradient type iterative methods (inc]udc  the QMR.) arc particularly suited
to Solve
product

]incar cqua,tions on parallc] computers bccausc they only involves matrix-vector
and global sums. Matrix-vector product is easily carried out in our data dccon~-
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Pcrformancc

Wc haVC COlnlJICiCd thC SOIVCr ])ackagc. The solver package is applied both to a finite
clcmcnt solution of clcct,romagnctic wave scattming from conducting sphere, and to a fhitc
diflcrcncc so]ut ion to a static heat dist ribut ion problcm governed by Poisson cquat ion.

]n Fig.4, wc p]ottccl the scaling behavior of the solver for the finite cliffcrcncc solution
to a Poisson equation. Wc let the problcm size scale with number of processors while
fixing 1600 grid points pcr processor, The data shown is the ratio of the time for solving
the entire problcm on M processors vs. t,hc time for solving a 1600-grid problcm on one
processor. l’hc preconditioned bi-conjugate gradient (PIlcG)  methods scales as N2, where
onc N comes from the matrix-vector l)roduct (sparsity rcduccs  N2 to N) and another N
comes from the order N iterations. Since N w M, wc expect the scaling bc linear in
M, and our data clearly supports this scaling behavior. The two-step hybrid first dots
a scqucntia] incomplete factorization o]] the interior points and then dots a parallel bi-
conjugatc  gradient method for those boundary points. The first part remains a constant
for the fixed size pcr processor, and the second part deals with those boundary points
which incrc(asc as square root of the total points. (hcc the first part, saturates, the total
time for the hybird nlcl,hod should incrcasc as fi, as our data iIldicated.

Conclusion

Wc have implcmcntcd a software package for constructing and solving symmetric sparse
cocfflcient, mal,rix of ]incar systems arisi]lg frol~~ solving partial differential equations based
on unstructured grids. ~’hc intcrfacc of the solver is through a !scrics of suboutinc  calls,
There arc several solutio]l nlethods  lwovidcd for user to cl~osc. Tllc scaling tests indicate
good scaling behavior of the two-step hybrid conjugate gradient - Cholcsky method.

1

2

3

4

This work is funded under a NASA 111’~~ ESS contract.

References:

1.S. Duff, A.M. Erisman, and J.K. Reid. Dzmci, MCihOd$ ~or Sparse Matrices, Oxford
University Prcss, London, 1986.

G.A. Lyzcnga, A. Racfsky and 11. Nom- Onlid, “In~plcn~cnt  Finite Element Software on
]Iypcrcubc Machillcs” , ill l’hc 7’hhi? (hljerencc  on Hyljcrcube  Concurrent Computers

u7d Applications, Ed. G.C. Fox, p.1 755, VOI.2, 1988, ACM Press, Ncw York.

L$Oh)hjI ~7’0hk77M  071 C07LCW?’C7Lt  ]’7’oc!csso?’s,  ~.~. FOX, hf.A. JOhIMOI~,  G.A.  IJy~c)~g&

S.W, Otto, J,K. Salmon and D.W. Walker, O~ap.8, Vol.], Prcnticc  Hall, Englcwood
(liffs, Ncw Jersey, 1988.

J .W. Pmkcr, R,]], Ferraro and }’. ~. l,icwcr, ‘(~oml)aring 3D Finite Element Formulations
Modeling Scattering from a ~onduct,i~lg Sphere”, IEEE ‘Ikans. on Magnctics,  p.1646,
VO1.29, No.2, March 1993.

4



L/. . . . .
‘. .:.  . .

. . . . . . .
.,  ..4

> -—+ —
E———T

II “
——=.,

0’

. . . . ..-

[. I

u

. . .. . .. . . . . . . . . . .-
—

[:1 >.. . . . . ..=__,=,  . . . . . . . . . . . . .
II x

>:
W.

. .

w
Cz”.
w

. . . . . . . .
.

. . . . . . . . . . .
.

----------  c:,,–,

1-~----———
..-. -.--=>.-  .-..,

II x

7.-.  -.- C=—-,  .-.-. -,
.7

II x

~_—_..._,_,.  .-.-.~.-.e...

19
. . . . . .. . . . ..c—-

_w

●  �

—..

u

.

i

-J

to
?
m.

,

.,,
●


